Rewriting The OpenNTF Site With Jakarta EE: UI

Mon Jun 27 15:06:20 EDT 2022

  1. Rewriting The OpenNTF Site With Jakarta EE, Part 1
  2. Rewriting The OpenNTF Site With Jakarta EE: UI

In what may be the last in this series for a bit, I'll talk about the current approach I'm taking for the UI for the new OpenNTF web site. This post will also tread ground I've covered before, when talking about the Jakarta MVC framework and JSP, but it never hurts to reinforce the pertinent aspects.

MVC

The entrypoint for the UI is Jakarta MVC, which is a framework that sits on top of JAX-RS. Unlike JSF or XPages, it leaves most app-structure duties to other components. This is due both to its young age (JSF predates and often gave rise to several things we've discussed so far) and its intent. It's "action-based", where you define an endpoint that takes an incoming HTTP request and produces a response, and generally won't have any server-side UI state. This is as opposed to JSF/XPages, where the core concept is the page you're working with and the page state generally exists across multiple requests.

Your starting point with MVC is a JAX-RS REST service marked with @Controller:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
package webapp.controller;

import java.text.MessageFormat;

import bean.EncoderBean;
import jakarta.inject.Inject;
import jakarta.mvc.Controller;
import jakarta.mvc.Models;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.NotFoundException;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.PathParam;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;
import model.home.Page;

@Path("/pages")
public class PagesController {
    
    @Inject
    Models models;
    
    @Inject
    Page.Repository pageRepository;
    
    @Inject
    EncoderBean encoderBean;

    @Path("{pageId}")
    @GET
    @Produces(MediaType.TEXT_HTML)
    @Controller
    public String get(@PathParam("pageId") String pageId) {
        String key = encoderBean.cleanPageId(pageId);
        Page page = pageRepository.findBySubject(key)
            .orElseThrow(() -> new NotFoundException(MessageFormat.format("Unable to find page for ID: {0}", key)));
        models.put("page", page); //$NON-NLS-1$
        return "page.jsp"; //$NON-NLS-1$
    }
}

In the NSF, this will respond to requests like /foo.nsf/xsp/app/pages/Some_Page_Name. Most of what is going on here is the same sort of thing we saw with normal REST services: the @Path, @GET, @Produces, and @PathParam are all normal JAX-RS, while @Inject uses the same CDI scaffolding I talked about in the last post.

MVC adds two things here: @Inject Models models and @Controller.

The Models object is conceptually a Map that houses variables that you can populate to be accessible via EL on the rendered page. You can think of this like viewScope or requestScope in XPages and is populated in something like the beforePageLoad phase. Here, I use the Models object to store the Page object I look up with JNoSQL.

The @Controller annotation marks a method or a class as participating in the MVC lifecycle. When placed on a class, it applies to all methods on the class, while placing it on a method specifically allows you to mix MVC and "normal" REST resources in the same class. Doing that would be useful if you want to, for example, provide HTML responses to browsers and JSON responses to API clients at the same resource URL.

When a resource method is marked for MVC use, it can return a string that represents either a page to render or a redirection in the form "redirect:some/resource". Here, it's hard-coded to use "page.jsp", but in another situation it could programmatically switch between different pages based on the content of the request or state of the app.

While this looks fairly clean on its own, it's important to bear in mind both the strengths and weaknesses of this approach. I think it will work here, as it does for my blog, because the OpenNTF site isn't heavy on interactive forms. When dealing with forms in MVC, you'll have to have another endpoint to listen for @POST (or other verbs with a shim), process that request from scratch, and return a new page. For example, from the XPages JEE example app:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
@Path("create")
@POST
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
@Controller
public String createPerson(
        @FormParam("firstName") @NotEmpty String firstName,
        @FormParam("lastName") String lastName,
        @FormParam("birthday") String birthday,
        @FormParam("favoriteTime") String favoriteTime,
        @FormParam("added") String added,
        @FormParam("customProperty") String customProperty
) {
    Person person = new Person();
    composePerson(person, firstName, lastName, birthday, favoriteTime, added, customProperty);
    
    personRepository.save(person);
    return "redirect:nosql/list";
}

That's already fiddlier than the XPages version, where you'd bind fields right to bean/document properties, and it gets potentially more complicated from there. In general, the more form-based your app is, the better a fit XPages/JSF is.

JSP

While MVC isn't intrinsically tied to JSP (it ships with several view engine hooks and you can write your own), JSP has the advantage of being built in to all Java webapp servers and is very well fit to purpose. When writing JSPs for MVC, the default location is to put them in WEB-INF/views, which is beneath WebContent in an NSF project:

Screenshot of JSPs in an NSF

The "tags" there are the general equivalent of XPages Custom Controls, and their presence in WEB-INF/tags is convention. An example page (the one used above) will tend to look something like this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
<%@page contentType="text/html" pageEncoding="UTF-8" trimDirectiveWhitespaces="true" session="false" %>
<%@taglib prefix="t" tagdir="/WEB-INF/tags" %>
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>
<t:layout>
    <turbo-frame id="page-content-${page.linkId}">
        <div>
            ${page.html}
        </div>
        
        <c:if test="${not empty page.childPageIds}">
            <div class="tab-container">
                <c:forEach items="${page.cleanChildPageIds}" var="pageId" varStatus="pageLoop">
                    <input type="radio" id="tab${pageLoop.index}" name="tab-group" ${pageLoop.index == 0 ? 'checked="checked"' : ''} />
                    <label for="tab${pageLoop.index}">${fn:escapeXml(encoder.cleanPageId(pageId))}</label>
                </c:forEach>
                    
                <div class="tabs">
                    <c:forEach items="${page.cleanChildPageIds}" var="pageId">
                        <turbo-frame id="page-content-${pageId}" src="xsp/app/pages/${encoder.urlEncode(pageId)}" class="tab" loading="lazy">
                        </turbo-frame>
                    </c:forEach>
                </div>
            </div>
        </c:if>
    </turbo-frame>
</t:layout>

There are, by shared lineage and concept, a lot of similarities with an XPage here. The first four lines of preamble boilerplate are pretty similar to the kind of stuff you'd see in an <xp:view/> element to set up your namespaces and page options. The tag prefixing is the same idea, where <t:layout/> refers to the "layout" custom tag in the NSF and <c:forEach/> refers to a core control tag that ships with the standard tag library, JSTL. The <turbo-frame/> business isn't JSP - I'll deal with that later.

The bits of EL here - all wrapped in ${...} - are from Expression Language 4.0, which is the current version of XPages's aging EL. On this page, the expressions are able to resolve variables that we explicitly put in the Models object, such as page, as well as CDI beans with the @Named annotation, such as encoderBean. There are also a number of implicit objects like request, but they're not used here.

In general, this is safely thought of as an XPage where you make everything load-time-bound and set viewState="nostate". The same sorts of concepts are all there, but there's no concept of a persistent component that you interact with. Any links, buttons, and scripts will all go to the server as a fresh request, not modifying an existing page. You can work with application and session scopes, but there's no "view" scope.

Hotwired Turbo

Though this app doesn't have much need for a lot of XPages's capabilities, I do like a few components even for a mostly "read-only" app. In particular, the <xe:djContentPane/> and <xe:djTabContainer/> controls have the delightful capability of deferring evaluation of their contents to later requests. This is a powerful way to speed up initial page load and, in the case of the tab container, skip needing to render parts of the page the user never uses.

For this and a couple other uses, I'm a fan of Hotwired Turbo, which is a library that grew out of 37 Signals's Rails-based development. The goal of Turbo and the other Hotwired components is to keep the benefits of server-based HTML rendering while mixing in a lot of the niceties of JS-run apps. There are two things that Turbo is doing so far in this app.

The first capability is dubbed "Turbo Drive", and it's sort of a freebie: you enable it for your app, tell it what is considered the app's base URL, and then it will turn any in-app links into "partial refresh" links: it downloads the page in the background and replaces just the changed part on the page. Though this is technically doing more work than a normal browser navigation, it ends up being faster for the user interface. And, since it also updates the URL to match the destination page and doesn't require manual modification of links, it's a drop-in upgrade that will also degrade gracefully if JavaScript isn't enabled.

The second capability is <turbo-frame/> up there, and it takes a bit more buy-in to the JS framework in your app design. The way I'm using Turbo Frames here is to support the page structure of OpenNTF, which is geared around a "primary" page as well as zero or more referenced pages that show up in tabs. Here, I'm buying in to Turbo Frames by surrounding the whole page in a <turbo-frame/> element with an id using the page's key, and then I reference each "sub-page" in a tab with that same ID. When loading the frame, Turbo makes a call to the src page, finds the element with the matching id value, and drops it in place inside the main document. The loading="lazy" parameter means that it defers loading until the frame is visible in the browser, which is handy when using the HTML/CSS-based tabs I have here.

I've been using this library for a while now, and I've been quite pleased. Though it was created for use with Rails, the design is independent of the server implementation, and the idioms fit perfectly with this sort of Java app too.

Conclusion

I think that wraps it up for now. As things progress, I may have more to add to this series, but my hope is that the app doesn't have to get much more complicated than the sort of stuff seen in this series. There are certainly big parts to tackle (like creating and managing projects), but I plan to do that by composing these elements. I remain delighted with this mode of NSF-based app development, and look forward to writing more clean, semi-declarative code in this vein.

Rewriting The OpenNTF Site With Jakarta EE, Part 1

Sun Jun 19 10:13:32 EDT 2022

Tags: jakartaee java
  1. Rewriting The OpenNTF Site With Jakarta EE, Part 1
  2. Rewriting The OpenNTF Site With Jakarta EE: UI

The design for the OpenNTF home page has been with us for a little while now and has served us pretty well. It looks good and covers the bases it needs to. However, it's getting a little long in the tooth and, more importantly, doesn't cover some capabilities that we're thinking of adding.

While we could potentially expand the current one, this provides a good opportunity for a clean start. I had actually started taking a swing at this a year and a half ago, taking the tack that I'd make a webapp and deploy it using the Domino Open Liberty Runtime. While that approach would put all technologies on the table, it'd certainly be weirder to future maintainers than an app inside an NSF (at least for now).

So I decided in the past few weeks to pick the project back up and move it into an NSF via the XPages Jakarta EE Support project. I can't say for sure whether I'll actually complete the project, but it'll regardless be a good exercise and has proven to be an excellent way to find needed features to implement.

I figure it'll also be useful to keep something of a travelogue here as I go, making posts periodically about what I've implemented recently.

The UI Toolkit

The original form of this project used MVC and JSP for the UI layer. Now that I was working in an NSF, I could readily use XPages, but for now I've decided to stick with the MVC approach. While it will make me have to solve some problems I wouldn't necessarily have to solve otherwise (like file uploads), it remains an extremely-pleasant way to write applications. I am also not constrained to this: since the vast majority of the logic is in Java beans and controller classes, switching the UI front-end would not be onerous. Also, I could theoretically mix JSP, JSF, XPages, and static HTML together in the app if I end up so inclined.

In the original app (as in this blog), I made use of WebJars to bring in JavaScript dependencies, namely Hotwire Turbo to speed up in-site navigation and use Turbo Frames. Since the NSF app in Designer doesn't have the Maven dependency mechanism the original app did, I just ended up copying the contents of the JAR into WebContent. That gave me a new itch to scratch, though: I'd love to be able to have META-INF/resources files in classpath JARs picked up by the runtime and made available, lowering the number of design elements present in the NSF.

The Data Backend

The primary benefit of this project so far has been forcing me to flesh out the Jakarta NoSQL driver in the JEE support project. I had kind of known hypothetically what features would be useful, but the best way to do this kind of thing is often to work with the tool until you hit a specific problem, and then solve that. So far, it's forced me to:

  • Implement the view support in my previous post
  • Add attachment support for documents, since we'll need to upload and download project releases
  • Improve handling of rich text and MIME, though this also has more room to grow
  • Switched the returned Streams from the driver to be lazy loading, meaning that not all documents/entries have to be read if the calling code stops reading the results partway through
  • Added the ability to use custom property types with readers/writers defined in the NSF

Together, these improvements have let me have almost no lotus.domino code in the app. The only parts left are a bean for formatting Notes-style names (which I may want to make a framework service anyway) and a bean for providing access to the various associated databases used by the app. Not too shabby! The app is still tied to Domino by way of using the Domino-specific extensions to JNoSQL, but the programming model is significantly better and the amount of app code was reduced dramatically.

Next Steps

There's a bunch of work to be done. The bulk of it is just implementing things that the current XPages app does: actually uploading projects, all the stuff like discussion lists, and so forth. I'll also want to move the server-side component of the small "IP Tools" suite I use for IP management stuff in here. Currently, that's implemented as Wink-based JAX-RS resources inside an OSGi bundle, but it'll make sense to move it here to keep things consolidated and to make use of the much-better platform capabilities.

As I mentioned above, I can't guarantee that I'll actually finish this project - it's all side work, after all - but it's been useful so far, and it's a further demonstration of how thoroughly pleasant the programming model of the JEE support project is.

Working Domino Views Into Jakarta NoSQL

Sun Jun 12 15:33:47 EDT 2022

A few versions ago, I added Jakarta NoSQL support to the XPages Jakarta EE Support project. For that, I used DQL and QueryResultsProcessor exclusively, since it's a near-exact match for the way JNoSQL normally goes things and QRP brought the setup into the realm of "good enough for the normal case".

However, as I've been working on a project that puts this to use, the limitations have started to hold me back.

The Limitations

The first trouble I ran into was the need to list, for example, the most recent 20 of an entity. This is something that QRP took some steps to handle, but it still has to build the pseudo-view anew the first time and then any time documents change. This gets prohibitively expensive quickly. In theory, QRP has enough flexibility to use existing views for sorting, but it doesn't appear to do so yet. Additionally, its "max entries" and "max documents" values are purely execution limits and not something to use to give a subset report: they throw an exception when that many entries have been processed, not just stop execution. For some of this, one can deal with it when manually writing the DQL query, but the driver doesn't have a path to do so.

The second trouble I ran into was the need to get a list composed of multiple kinds of documents. This one is a limitation of the default idiom that JNoSQL uses, where you do queries on named types of documents - and, in the Domino driver, that "type" corresponds to Form field values.

The Uncomfortable Solution

Thus, hat in hand, I returned to the design element I had hoped to skim past: views. Views are an important tool, but they are way, way overused in Domino, and I've been trying over time to intentionally limit my use of them to break the habit. Still, they're obviously the correct tool for both of these jobs.

So I made myself an issue to track this and set about tinkering with some ways to make use of them in a way that would do what I need, be flexible for future needs, and yet not break the core conceit of JNoSQL too much. My goal is to make almost no calls to an explicit Domino API, and so doing this will be a major step in that direction.

Jakarta NoSQL's Extensibility

Fortunately for me, Jakarta NoSQL is explicitly intended to be extensible per driver, since NoSQL databases diverge more wildly in the basics than SQL databases tend to. I made use of this in the Darwino driver to provide support for stored cursors, full-text search, and JSQL, though all of those had the bent of still returning full documents and not "view entries" in the Domino sense.

Still, the idea is very similar. Jakarta NoSQL encourages a driver author to write custom annotations for repository methods to provide hints to the driver to customize behavior. This generally happens at the "mapping" layer of the framework, which is largely CDI-based and gives you a lot of room to intercept and customize requests from the app-developer level.

Implementation

To start out with, I added two annotations you can add to your repository methods: @ViewEntries and @ViewDocuments. For example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@RepositoryProvider("blogRepository")
public interface BlogEntryRepository extends DominoRepository<BlogEntry, String> {
    public static final String VIEW_BLOGS = "vw_Content_Blogs"; //$NON-NLS-1$
    
    @ViewDocuments(value=VIEW_BLOGS, maxLevel=0)
    Stream<BlogEntry> findRecent(Pagination pagination);
    
    @ViewEntries(value=VIEW_BLOGS, maxLevel=0)
    Stream<BlogEntry> findAll();
}

The distinction here is one of the ways I slightly break the main JNoSQL idioms. JNoSQL was born from the types of databases where it's just as easy to retrieve the entire document as it is to retrieve part - this is absolutely the case in JSON-based systems like Couchbase (setting aside attachments). However, Domino doesn't quite work that way: it can be significantly faster to fetch only a portion of a document than the data from all items, namely when some of those items are rich text or MIME.

The @ViewEntries annotation causes the driver to consider only the item values found in the entries of the view it's referencing. In a lot of cases, this is all you'll need. When you set a column in Designer to be just directly an item value from the documents, the column is by default named with the same name, and so a mapped entity pulled from this column can have the same fields filled in as from a document. This does have the weird characteristic where objects pulled from one method may have different instance values from the "same" objects from another method, but the tradeoff is worth it.

@ViewDocuments, fortunately, doesn't have this oddity. With that annotation, documents are processed in the same way as with a normal query; they just are retrieved according to the selection and order from the backing view.

Using these capabilities allowed me to slightly break the JNoSQL idiom in the other way I needed: reading unrelated document types in one go. For this, I cheated a bit and made a "document" type with a form name that doesn't correspond to anything, and then made the mapped items based on the view name. So I created this entity class:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
@Entity("ProjectActivity")
public class ProjectActivity {
    @Column("$10")
    private String projectName;
    @Column("Entry_Date")
    private OffsetDateTime date;
    @Column("$12")
    private String createdBy;
    @Column("Form")
    private String form;
    @Column("subject")
    private String subject;

    /* snip */
}

As you might expect, no form has a field named $10, but that is the name of the view column, and so the mapping layer happily populates these objects from the view when configured like so:

1
2
3
4
5
@RepositoryProvider("projectsRepository")
public interface ProjectActivityRepository extends DominoRepository<ProjectActivity, String> {
    @ViewEntries("AllbyDate")
    Stream<ProjectActivity> findByProjectName(@ViewCategory String projectName);
}

These are a little weird in that you wouldn't want to save such entities lest you break your data, but, as long as you keep that in mind, it's not a bad way to solve the problem.

Future Changes

Since this implementation was based on fulfilling just my immediate needs and isn't the result of careful consideration, it's likely to be something that I'll revisit as I go. For example, that last example shows the third custom annotation I introduced: @ViewCategory. I wanted to restrict entries to a category that is specified programmatically as part of the query, and so annotating the method parameter was a great way to do that. However, there are all sorts of things one might want to do dynamically when querying a view: setting the max level programmatically, specifying expand/collapse behavior, and so forth. I don't know yet whether I'll want to handle those by having a growing number of parameter annotations like that or if it would make more sense to consolidate them into a single ViewQueryOptions parameter or something.

I also haven't done anything special with category or total rows. While they should just show up in the list like any other entry, there's currently nothing special signifying them, and I don't have a way to get to the note ID either (just the UNID). I'll probably want to create special pseudo-items like @total or @category to indicate their status.

There'll also no doubt be a massive wave of work to do when I turn this on something that's not just a little side project. While I've made great strides in my oft-mentioned large client project to get it to be more platform-independent, it's unsurprisingly still riven with Domino API references top to bottom. While I don't plan on moving it anywhere else, writing so much code using explicit database-specific API calls is just bad practice in general, and getting this driver to a point where it can serve that project's needs would be a major sign of its maturity.

Per-NSF-Scoped JWT Authorization With JavaSapi

Sat Jun 04 10:35:05 EDT 2022

Tags: domino dsapi java
  1. Poking Around With JavaSapi
  2. Per-NSF-Scoped JWT Authorization With JavaSapi
  3. WebAuthn/Passkey Login With JavaSapi

In the spirit of not leaving well enough alone, I decided the other day to tinker a bit more with JavaSapi, the DSAPI peer tucked away undocumented in Domino. While I still maintain that this is too far from supported for even me to put into production, I think it's valuable to demonstrate the sort of thing that this capability - if made official - would make easy to implement.

JWT

I've talked about JWT a bit before, and it was in a similar context: I wanted to be able to access a third-party API that used JWT to handle authorization, so I wrote a basic library that could work with LS2J. While JWT isn't inherently tied to authorization like this, it's certainly where it's found a tremendous amount of purchase.

JWT has a couple neat characteristics, and the ones that come in handy most frequently are a) that you can enumerate specific "claims" in the token to restrict what the token allows the user to do and b) if you use a symmetric signature key, you can generate legal tokens on the client side without the server having to generate them. "b" there is optional, but makes JWT a handy way to do a quick shared secret between servers to allow for trusted authentication.

It's a larger topic than that, for sure, but that's the quick and dirty of it.

Mixing It With An NSF

Normally on Domino, you're either authenticated for the whole server or you're not. That's usually fine - if you want to have a restricted account, you can specifically grant it access to only a few NSFs. However, it's good to be able to go more fine-grained, restricting even powerful accounts to only do certain things in some contexts.

So I had the notion to take the JWT capability and mix it with JavaSapi to allow you to do just that. The idea is this:

  1. You make a file resource (hidden from the web) named "jwt.txt" that contains your per-NSF secret.
  2. A remote client makes a request with an Authorization header in the form of Bearer Some.JWT.Here
  3. The JavaSapi interceptor sees this, checks the target NSF, loads the secret, verifies it against the token, and authorizes the user if it's legal

As it turns out, this turned out to be actually not that difficult in practice at all.

The main core of the code is:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public int authenticate(IJavaSapiHttpContextAdapter context) {
    IJavaSapiHttpRequestAdapter req = context.getRequest();

    // In the form of "/foo.nsf/bar"
    String uri = req.getRequestURI();
    String secret = getJwtSecret(uri);
    if(StringUtil.isNotEmpty(secret)) {
        try {
            String auth = req.getHeader("Authorization"); //$NON-NLS-1$
            if(StringUtil.isNotEmpty(auth) && auth.startsWith("Bearer ")) { //$NON-NLS-1$
                String token = auth.substring("Bearer ".length()); //$NON-NLS-1$
                Optional<String> user = decodeAuthenticationToken(token, secret);
                if(user.isPresent()) {
                    req.setAuthenticatedUserName(user.get(), "JWT"); //$NON-NLS-1$
                    return HTEXTENSION_REQUEST_AUTHENTICATED;
                }
            }
        } catch(Throwable t) {
            t.printStackTrace();
        }
    }

    return HTEXTENSION_EVENT_DECLINED;
}

To read the JWT secret, I used IBM's NAPI:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
private String getJwtSecret(String uri) {
    int nsfIndex = uri.toLowerCase().indexOf(".nsf"); //$NON-NLS-1$
    if(nsfIndex > -1) {
        String nsfPath = uri.substring(1, nsfIndex+4);
        
        try {
            NotesSession session = new NotesSession();
            try {
                if(session.databaseExists(nsfPath)) {
                    // TODO cache lookups and check mod time
                    NotesDatabase database = session.getDatabase(nsfPath);
                    database.open();
                    NotesNote note = FileAccess.getFileByPath(database, SECRET_NAME);
                    if(note != null) {
                        return FileAccess.readFileContentAsString(note);
                    }
                }
            } finally {
                session.recycle();
            }
        } catch(Exception e) {
            e.printStackTrace();
        }
    }
    return null;
}

And then, for the actual JWT handling, I use the auth0 java-jwt library:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
public static Optional<String> decodeAuthenticationToken(final String token, final String secret) {
	if(token == null || token.isEmpty()) {
		return Optional.empty();
	}
	
	try {
		Algorithm algorithm = Algorithm.HMAC256(secret);
		JWTVerifier verifier = JWT.require(algorithm)
		        .withIssuer(ISSUER)
		        .build();
		DecodedJWT jwt = verifier.verify(token);
		Claim claim = jwt.getClaim(CLAIM_USER);
		if(claim != null) {
			return Optional.of(claim.asString());
		} else {
			return Optional.empty();
		}
	} catch (IllegalArgumentException | UnsupportedEncodingException e) {
		throw new RuntimeException(e);
	}
}

And, with that in place, it works:

JWT authentication in action

That text is coming from a LotusScript agent - as I mentioned in my original JavaSapi post, this authentication is trusted the same way DSAPI authentication is, and so all elements, classic or XPages, will treat the name as canon.

Because the token is based on the secret specifically from the NSF, using the same token against a different NSF (with no JWT secret or a different one) won't authenticate the user:

JWT ignored by a different endpoint

If we want to be fancy, we can call this scoped access.

This is the sort of thing that makes me want JavaSapi to be officially supported. Custom authentication and request filtering are much, much harder on Domino than on many other app servers, and JavaSapi dramatically reduces the friction.